Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.496
Filtrar
2.
Elife ; 122024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578680

RESUMO

Heterogeneity in endothelial cell (EC) sub-phenotypes is becoming increasingly appreciated in atherosclerosis progression. Still, studies quantifying EC heterogeneity across whole transcriptomes and epigenomes in both in vitro and in vivo models are lacking. Multiomic profiling concurrently measuring transcriptomes and accessible chromatin in the same single cells was performed on six distinct primary cultures of human aortic ECs (HAECs) exposed to activating environments characteristic of the atherosclerotic microenvironment in vitro. Meta-analysis of single-cell transcriptomes across 17 human ex vivo arterial specimens was performed and two computational approaches quantitatively evaluated the similarity in molecular profiles between heterogeneous in vitro and ex vivo cell profiles. HAEC cultures were reproducibly populated by four major clusters with distinct pathway enrichment profiles and modest heterogeneous responses: EC1-angiogenic, EC2-proliferative, EC3-activated/mesenchymal-like, and EC4-mesenchymal. Quantitative comparisons between in vitro and ex vivo transcriptomes confirmed EC1 and EC2 as most canonically EC-like, and EC4 as most mesenchymal with minimal effects elicited by siERG and IL1B. Lastly, accessible chromatin regions unique to EC2 and EC4 were most enriched for coronary artery disease (CAD)-associated single-nucleotide polymorphisms from Genome Wide Association Studies (GWAS), suggesting that these cell phenotypes harbor CAD-modulating mechanisms. Primary EC cultures contain markedly heterogeneous cell subtypes defined by their molecular profiles. Surprisingly, the perturbations used here only modestly shifted cells between subpopulations, suggesting relatively stable molecular phenotypes in culture. Identifying consistently heterogeneous EC subpopulations between in vitro and ex vivo models should pave the way for improving in vitro systems while enabling the mechanisms governing heterogeneous cell state decisions.


Assuntos
Aterosclerose , Doença da Artéria Coronariana , Humanos , Células Endoteliais/metabolismo , Estudo de Associação Genômica Ampla , Aterosclerose/metabolismo , Doença da Artéria Coronariana/genética , Cromatina/metabolismo
3.
BMC Cardiovasc Disord ; 24(1): 209, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627625

RESUMO

AIMS: Regular transient limb ischemia (RTLI) can prevent atherosclerosis (AS) progression in hypercholesterolemic rabbits. This study aimed to investigate the minimum effective intensity and possible mechanisms of RTLI for preventing atherosclerosis. METHODS: Eighty rabbits were divided into eight groups: normal (N), high cholesterol (H), three RTLI [three RTLI cycles every other day (R3qod), three RTLI cycles daily (R3qd), and six RTLI cycles daily (R6qd), each cycle of RTLI included 5 min of limb ischemia followed by 5 min limb reperfusion], and three correlated sham RTLI [sham ischemia for 30 min once every other day (S3qod), sham ischemia for 30 min once daily (S3qd), and sham ischemia for 60 min once daily (S6qd)]. Rabbits in group N were kept normally, while the others were fed 1% cholesterol diet for 12 weeks. The RTLI and sham RTLI groups were received RTLI or sham RTLI procedure, respectively. The plaque area in the thoracic aorta was determined by oil red O staining, and quantifying the ratio of plaque area to intimal area (PA/IA). Endothelium-dependent and -independent relaxation were also determined. Endothelial cell were isolated from abdominal aorta of rabbits, and the apoptosis ratio was detected using flow cytometry. RESULTS: The PA/IA and early apoptotic cell ratio was significantly lower as well as the endothelium-dependent relaxation response was higher in group R6qd than those in groups H and S6qd, while those in the R3qod group was not significantly different from those in groups H and S3qod, as well as those in the R3qd group showed no significant difference compared to those in groups H and S3qd. CONCLUSIONS: Six cycles of RTLI daily was the optimal effective intensity to prevent AS progression in rabbits. Endothelial function improvement and apoptosis inhibition might contribute to the anti-AS effects.


Assuntos
Aterosclerose , Animais , Coelhos , Aterosclerose/prevenção & controle , Aterosclerose/metabolismo , Colesterol/metabolismo , Apoptose , Isquemia/prevenção & controle , Células Endoteliais , Endotélio , Endotélio Vascular/metabolismo
4.
Front Endocrinol (Lausanne) ; 15: 1338458, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38469142

RESUMO

Introduction: The development of cognitive dysfunction is not necessarily associated with diet-induced obesity. We hypothesized that cognitive dysfunction might require additional vascular damage, for example, in atherosclerotic mice. Methods: We induced atherosclerosis in male C57BL/6N mice by injecting AAV-PCSK9DY (2x1011 VG) and feeding them a cholesterol-rich Western diet. After 3 months, mice were examined for cognition using Barnes maze procedure and for cerebral blood flow. Cerebral vascular morphology was examined by immunehistology. Results: In AAV-PCSK9DY-treated mice, plaque burden, plasma cholesterol, and triglycerides are elevated. RNAseq analyses followed by KEGG annotation show increased expression of genes linked to inflammatory processes in the aortas of these mice. In AAV-PCSK9DY-treated mice learning was delayed and long-term memory impaired. Blood flow was reduced in the cingulate cortex (-17%), caudate putamen (-15%), and hippocampus (-10%). Immunohistological studies also show an increased incidence of string vessels and pericytes (CD31/Col IV staining) in the hippocampus accompanied by patchy blood-brain barrier leaks (IgG staining) and increased macrophage infiltrations (CD68 staining). Discussion: We conclude that the hyperlipidemic PCSK9DY mouse model can serve as an appropriate approach to induce microvascular dysfunction that leads to reduced blood flow in the hippocampus, which could explain the cognitive dysfunction in these mice.


Assuntos
Aterosclerose , Hiperlipidemias , Masculino , Camundongos , Animais , Pró-Proteína Convertase 9/genética , Incidência , Camundongos Endogâmicos C57BL , Hiperlipidemias/patologia , Aterosclerose/metabolismo , Colesterol , Circulação Cerebrovascular/fisiologia
5.
Inflammopharmacology ; 32(2): 1387-1400, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38430414

RESUMO

Atherosclerosis, a multifaceted and persistent inflammatory condition, significantly contributes to the progression of cardiocerebrovascular disorders, such as myocardial infarctions and cerebrovascular accidents. It involves the accumulation of cholesterol, fatty deposits, calcium and cellular debris in the walls of arteries, leading to the formation of plaques. Our aim is to investigate the potential of sinomenine to counteract atherosclerosis in mice lacking Apolipoprotein E (ApoE-/-) Mice. We employed the high-fat diet-induced method to induce atherosclerosis in ApoE-/- mice, and the mice were treated with sinomenine (5, 10, and 15 mg/kg) and simvastatin (0.5 mg/kg) for 12 weeks. Body weight, water intake, and food intake were assessed. Lipid parameters, oxidative stress, inflammatory cytokines, and mRNA levels were estimated. Sinomenine treatment remarkably (P < 0.001) suppressed body weight, along with food and water intake. Sinomenine altered the levels of total cholesterol (TC), high-density lipoprotein (HDL), triglyceride (TG), low-density lipoprotein (LDL), and very low-density lipoprotein (VLDL), which were modulated in the atherosclerosis group. Sinomenine treatment also altered the levels of oxidative stress parameters such as glutathione peroxidase (GPx), catalase (CAT), malonaldehyde (MDA), superoxide dismutase (SOD) and glutathione (GSH). In addition, it modulated cardiac parameters like C-reactive protein (CRP), endothelin-1 (ET-1), thromboxane B2 (TXB2), nitric oxide (NO), cardiac troponin I (cTnI), lactate dehydrogenase (LDH), and creatinine kinase isoenzymes (CK-MB). Inflammatory cytokines interleukin (IL)-1α, IL-1ß, TNF-α, IL-6, and IL-10 were also affected. Sinomenine further suppressed the mRNA expression of IL-6, IL-17, IL-10, tumor necrosis factor-α (TNF-α), Il-1ß, monocyte chemoattractant protein-1 (MCP-1), MCP-2, MCP-3, transforming Growth Factor-1ß (TGF-1ß), vascular cell adhesion molecule 1 (VCAM-1), and intercellular adhesion molecule-1 (ICAM-1). The results suggest that sinomenine remarkably suppressed the development of atherosclerosis in the early stage.


Assuntos
Aterosclerose , Interleucina-10 , Morfinanos , Animais , Camundongos , Apolipoproteínas , Apolipoproteínas E , Aterosclerose/tratamento farmacológico , Aterosclerose/metabolismo , Peso Corporal , Colesterol , Citocinas , Interleucina-6 , Lipoproteínas LDL , Camundongos Knockout , Camundongos Knockout para ApoE , RNA Mensageiro , Fator de Necrose Tumoral alfa/metabolismo
6.
Front Immunol ; 15: 1297893, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38504977

RESUMO

Introduction: Atherosclerosis is a lipid-driven inflammatory disease of the arterial wall, and the underlying cause of the majority of cardiovascular diseases. Recent advances in high-parametric immunophenotyping of immune cells indicate that T cells constitute the major leukocyte population in the atherosclerotic plaque. The E3 ubiquitin ligase Casitas B-lymphoma proto-oncogene-B (CBL-B) is a critical intracellular regulator that sets the threshold for T cell activation, making CBL-B a potential therapeutic target to modulate inflammation in atherosclerosis. We previously demonstrated that complete knock-out of CBL-B aggravated atherosclerosis in Apoe-/- mice, which was attributed to increased macrophage recruitment and increased CD8+ T cell activation in the plaque. Methods: To further study the T cell specific role of CBL-B in atherosclerosis, Apoe-/- CD4cre Cblb fl/fl (Cbl-bcKO) mice and Apoe-/-CD4WTCblbfl/fl littermates (Cbl-bfl/fl) were fed a high cholesterol diet for ten weeks. Results: Cbl-bcKO mice had smaller atherosclerotic lesions in the aortic arch and root compared to Cbl-bfl/fl, and a substantial increase in CD3+ T cells in the plaque. Collagen content in the plaque was decreased, while other plaque characteristics including plaque necrotic core, macrophage content, and smooth muscle cell content, remained unchanged. Mice lacking T cell CBL-B had a 1.4-fold increase in CD8+ T cells and a 1.8-fold increase in regulatory T cells in the spleen. Splenic CD4+ and CD8+ T cells had increased expression of C-X-C Motif Chemokine Receptor 3 (CXCR3) and interferon-γ (IFN-γ), indicating a T helper 1 (Th1)-like/effector CD8+ T cell-like phenotype. Conclusion: In conclusion, Cbl-bcKO mice have reduced atherosclerosis but show increased T cell accumulation in the plaque accompanied by systemic T cell activation.


Assuntos
Aterosclerose , Linfoma , Placa Aterosclerótica , Animais , Camundongos , Apolipoproteínas E/genética , Aterosclerose/metabolismo , Linfócitos T CD8-Positivos , Camundongos Knockout , Placa Aterosclerótica/patologia , Proteínas Proto-Oncogênicas c-cbl/genética , Proteínas Proto-Oncogênicas c-cbl/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
7.
Nat Commun ; 15(1): 2789, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38555386

RESUMO

Proprotein convertase subtilisin/kexin type-9 (PCSK9) binds to and degrades low-density lipoprotein (LDL) receptor, leading to increase of LDL cholesterol in blood. Its blockers have emerged as promising therapeutics for cardiovascular diseases. Here we show that PCSK9 itself directly induces inflammation and aggravates atherosclerosis independently of the LDL receptor. PCSK9 exacerbates atherosclerosis in LDL receptor knockout mice. Adenylyl cyclase-associated protein 1 (CAP1) is the main binding partner of PCSK9 and indispensable for the inflammatory action of PCSK9, including induction of cytokines, Toll like receptor 4, and scavenger receptors, enhancing the uptake of oxidized LDL. We find spleen tyrosine kinase (Syk) and protein kinase C delta (PKCδ) to be the key mediators of inflammation after PCSK9-CAP1 binding. In human peripheral blood mononuclear cells, serum PCSK9 levels are positively correlated with Syk, PKCδ, and p65 phosphorylation. The CAP1-fragment crystallizable region (CAP1-Fc) mitigates PCSK9-mediated inflammatory signal transduction more than the PCSK9 blocking antibody evolocumab does.


Assuntos
Aterosclerose , Pró-Proteína Convertase 9 , Animais , Camundongos , Humanos , Pró-Proteína Convertase 9/genética , Pró-Proteína Convertase 9/metabolismo , NF-kappa B/metabolismo , Leucócitos Mononucleares/metabolismo , Aterosclerose/metabolismo , Receptores de LDL/metabolismo , Inflamação , LDL-Colesterol , Camundongos Knockout
8.
Int J Mol Sci ; 25(6)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38542070

RESUMO

Monomeric C-reactive protein (mCRP) has recently been implicated in the abnormal vascular activation associated with development of atherosclerosis, but it may act more specifically through mechanisms perpetuating damaged vessel inflammation and subsequent aggregation and internalization of resident macrophages. Whilst the direct effects of mCRP on endothelial cells have been characterized, the interaction with blood monocytes has, to our knowledge, not been fully defined. Here we showed that mCRP caused a strong aggregation of both U937 cell line and primary peripheral blood monocytes (PBMs) obtained from healthy donors. Moreover, this increase in clustering was dependent on focal adhesion kinase (FAK) activation (blocked by a specific inhibitor), as was the concomitant adhesive attachment to the plate, which was suggestive of macrophage differentiation. Confocal microscopy confirmed the increased expression and nuclear localization of p-FAK, and cell surface marker expression associated with M1 macrophage polarization (CD11b, CD14, and CD80, as well as iNOS) in the presence of mCRP. Inclusion of a specific CRP dissociation/mCRP inhibitor (C10M) effectively inhibited PBMs clustering, as well as abrogating p-FAK expression, and partially reduced the expression of markers associated with M1 macrophage differentiation. mCRP also increased the secretion of pro-inflammatory cytokines Interleukin-8 (IL-8) and Interleukin-1ß (IL-1ß), without notably affecting MAP kinase signaling pathways; inclusion of C10M did not perturb or modify these effects. In conclusion, mCRP modulates PBMs through a mechanism that involves FAK and results in cell clustering and adhesion concomitant with changes consistent with M1 phenotypical polarization. C10M has potential therapeutic utility in blocking the primary interaction of mCRP with the cells-for example, by protecting against monocyte accumulation and residence at damaged vessels that may be predisposed to plaque development and atherosclerosis.


Assuntos
Aterosclerose , Proteína C-Reativa , Humanos , Proteína C-Reativa/metabolismo , Monócitos/metabolismo , Inflamação/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Células Endoteliais/metabolismo , Células U937 , Aterosclerose/metabolismo
9.
J Ethnopharmacol ; 328: 118076, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38521431

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: QiXian Granule (QXG) is an integrated traditional Chinese medicine formula used to treat postmenopausal atherosclerotic (AS) cardiovascular diseases. The previous studies have found that QXG inhibited isoproterenol (ISO)-induced myocardial remodeling. And its active ingredient, Icraiin, can inhibit ferroptosis by promoting oxidized low-density lipoprotein (xo-LDL)-induced vascular endothelial cell injury and autophagy in atherosclerotic mice. Another active ingredient, Salvianolic Acid B, can suppress ferroptosis and apoptosis during myocardial ischemia/reperfusion injury by reducing ubiquitin-proteasome degradation of Glutathione Peroxidase 4 (GPX4) and down-regulating the reactive oxygen species (ROS)- c-Jun N-terminal kinases (JNK)/mitogen-activated protein kinase (MAPK) pathway. AIM OF THE STUDY: The objective of this research was to assess the possible impact of QXG on atherosclerosis in postmenopausal individuals and investigate its underlying mechanisms. MATERIALS AND METHODS: Female ApoE-/- mice underwent ovariectomy and were subjected to a high-fat diet (HFD) to establish a postmenopausal atherosclerosis model. The therapeutic effects of QXG were observed in vivo and in vitro through intraperitoneal injection of erastin, G-protein Coupled Estrogen Receptor (GPER) inhibitor (G15), and silent Mucolipin Transient Receptor Potential Channel 1 (TRPML1) adenovirus injection via tail vein. UPLC-MS and molecular docking techniques identified and evaluated major QXG components, contributing to the investigation of QXG's anti-postmenopausal atherosclerotic effects. RESULTS: QXG increased serum Estradiol levels, decreased follicle-stimulating hormone (FSH) and luteinizing hormone (LH) levels, which indicated QXG had estrogen-like effects in Ovx/ApoE-/- mice. Furthermore, QXG demonstrated the potential to impede the progression of AS in Ovx/ApoE-/- mice, as evidenced by reductions in serum triglycerides (TG), total cholesterol (TC), and low-density lipoprotein-cholesterol (LDL-C) levels. Additionally, QXG inhibited ferroptosis in Ovx/ApoE-/- mice. Notably, UPLC-MS analysis identified a total of 106 active components in QXG. The results of molecular docking analysis demonstrated that Epmedin B, Astragaloside II, and Orientin exhibit strong binding affinity towards TRPML1. QXG alleviates the progression of atherosclerosis by activating TRPML1 through the GPER pathway or directly activating TRPML1, thereby inhibiting GPX4 and ferritin heavy chain (FTH1)-mediated iron pendant disease. In vitro, QXG-treated serum suppressed proliferation, migration, and ox-LDL-induced MMP and ROS elevation in HAECs. CONCLUSION: QXG inhibited GPX4 and FTH1-mediated ferroptosis in vascular endothelial cells through up-regulating GPER/TRPML1 signaling, providing a potential therapeutic option for postmenopausal females seeking a safe and effective medication to prevent atherosclerosis. The study highlights QXG's estrogenic properties and its promising role in combating postmenopausal atherosclerosis.


Assuntos
Aterosclerose , Medicamentos de Ervas Chinesas , Ferroptose , Feminino , Animais , Camundongos , Células Endoteliais , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Pós-Menopausa , Cromatografia Líquida , Simulação de Acoplamento Molecular , Espectrometria de Massas em Tandem , Aterosclerose/tratamento farmacológico , Aterosclerose/prevenção & controle , Aterosclerose/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , LDL-Colesterol/metabolismo , Estrogênios/metabolismo , Apolipoproteínas E , Lisossomos/metabolismo
10.
J Am Chem Soc ; 146(14): 10093-10102, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38545938

RESUMO

Real-time monitoring of the development of atherosclerosis (AS) is key to the management of cardiovascular disease (CVD). However, existing laboratory approaches lack sensitivity and specificity, mostly due to the dearth of reliable AS biomarkers. Herein, we developed an in vivo fluorescent labeling strategy that allows specific staining of the foam cell-derived extracellular vesicles (EVs) in atherosclerotic plaques, which are released into the blood as circulating biomarkers for in vitro detection of AS. This strategy relies on a self-assembled nanoprobe that could recognize foam cells specifically, where the probe is degraded by the intracellular HClO to produce a trifluoromethyl-bearing boron-dipyrromethene fluorophore (termed B-CF3), a lipophilic dye that can be transferred to the exosomal membranes. These circulating B-CF3-stained EVs can be detected directly on a fluorescence spectrometer or microplate reader without resorting to any sophisticated analytical method. This liquid-biopsy format enables early detection and real-time differentiation of lesion vulnerability during AS progression, facilitating effective CVD management.


Assuntos
Aterosclerose , Vesículas Extracelulares , Humanos , Células Espumosas/metabolismo , Células Espumosas/patologia , Vesículas Extracelulares/metabolismo , Biomarcadores/metabolismo , Corantes Fluorescentes/metabolismo , Aterosclerose/diagnóstico por imagem , Aterosclerose/metabolismo
11.
Cell Rep ; 43(3): 113815, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38428421

RESUMO

Diabetes-associated atherosclerosis involves excessive immune cell recruitment and plaque formation. However, the mechanisms remain poorly understood. Transcriptomic analysis of the aortic intima in Ldlr-/- mice on a high-fat, high-sucrose-containing (HFSC) diet identifies a macrophage-enriched nuclear long noncoding RNA (lncRNA), MERRICAL (macrophage-enriched lncRNA regulates inflammation, chemotaxis, and atherosclerosis). MERRICAL expression increases by 249% in intimal lesions during progression. lncRNA-mRNA pair genomic mapping reveals that MERRICAL positively correlates with the chemokines Ccl3 and Ccl4. MERRICAL-deficient macrophages exhibit lower Ccl3 and Ccl4 expression, chemotaxis, and inflammatory responses. Mechanistically, MERRICAL guides the WDR5-MLL1 complex to activate CCL3 and CCL4 transcription via H3K4me3 modification. MERRICAL deficiency in HFSC diet-fed Ldlr-/- mice reduces lesion formation by 74% in the aortic sinus and 86% in the descending aorta by inhibiting leukocyte recruitment into the aortic wall and pro-inflammatory responses. These findings unveil a regulatory mechanism whereby a macrophage-enriched lncRNA potently inhibits chemotactic responses, alleviating lesion progression in diabetes.


Assuntos
Doenças da Aorta , Aterosclerose , Diabetes Mellitus , Placa Aterosclerótica , RNA Longo não Codificante , Animais , Camundongos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Quimiotaxia , Doenças da Aorta/genética , Doenças da Aorta/metabolismo , Doenças da Aorta/patologia , Aterosclerose/metabolismo , Macrófagos/metabolismo , Diabetes Mellitus/patologia , Camundongos Knockout , Camundongos Endogâmicos C57BL , Receptores de LDL , Placa Aterosclerótica/metabolismo
12.
Free Radic Biol Med ; 216: 106-117, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38461872

RESUMO

Oxidized low density lipoprotein (oxLDL)-induced endothelial oxidative damage promotes the development of atherosclerosis. Caveolae play an essential role in maintaining the survival and function of vascular endothelial cell (VEC). It is reported that the long coiled-coil protein NECC2 is localized in caveolae and is associated with neural cell differentiation and adipocyte formation, but its role in VECs needs to be clarified. Our results showed NECC2 expression increased in the endothelium of plaque-loaded aortas and oxLDL-treated HUVECs. Down-regulation of NECC2 by NECC2 siRNA or compound YF-307 significantly inhibited oxLDL-induced VEC apoptosis and the adhesion factors expression. Remarkably, inhibition of NECC2 expression in the endothelium of apoE-/- mice by adeno-associated virus (AAV)-carrying NECC2 shRNA or compound YF-307 alleviated endothelium injury and restricted atherosclerosis development. The immunoprecipitation results confirmed that NECC2 interacted with Tyk2 and caveolin-1(Cav-1) in VECs, and NECC2 further promoted the phosphorylation of Cav-1 at Tyr14 b y activating Tyk2 phosphorylation. On the other hand, inhibiting NECC2 levels suppressed oxLDL-induced phosphorylation of Cav-1, uptake of oxLDL by VECs, accumulation of intracellular reactive oxygen species and activation of NF-κB. Our findings suggest that NECC2 may contribute to oxLDL-induced VEC injury and atherosclerosis via modulating Cav-1 phosphorylation through Tyk2. This work provides a new concept and drug target for treating atherosclerosis.


Assuntos
Aterosclerose , Animais , Camundongos , Apolipoproteínas/efeitos adversos , Apolipoproteínas/metabolismo , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Aterosclerose/metabolismo , Endotélio/metabolismo , Lipoproteínas LDL/metabolismo , Estresse Oxidativo
13.
Cell Signal ; 118: 111136, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38471617

RESUMO

Atherosclerosis is characterised by lipid accumulation and formation of foam cells in arterial walls. Dysregulated autophagy is a crucial factor in atherosclerosis development. The significance of microRNA (miR)-125b-1-3p in cardiovascular disease is well-established; however, its precise role in regulating autophagy and impact on atherosclerosis in vascular smooth muscle cells (VSMCs) remain unclear. Here, we observed reduced autophagic activity and decreased miR-125b expression during atherosclerosis progression. miR-125b-1-3p overexpression significantly reduced atherosclerotic plaque development in mice; it also led to decreased lipid uptake and deposition in VSMCs, enhanced autophagy, and suppression of smooth muscle cell phenotypic changes in-vitro. An interaction between miR-125b-1-3p and the RRAGD/mTOR/ULK1 pathway was revealed, elucidating its role in promoting autophagy. Therefore, miR-125b-1-3p plays a pivotal role in enhancing autophagic processes, inhibiting foam cell formation in VSMCs and mitigating atherosclerosis progression, partly through RRAGD/mTOR/ULK1 signaling axis modulation. Thus, miR-125b-1-3p is a promising target for preventive and therapeutic strategies for atherosclerosis.


Assuntos
Aterosclerose , MicroRNAs , Animais , Camundongos , Aterosclerose/genética , Aterosclerose/metabolismo , Autofagia/genética , Proliferação de Células/fisiologia , Lipídeos , MicroRNAs/genética , MicroRNAs/metabolismo , Miócitos de Músculo Liso/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
14.
Int J Mol Sci ; 25(5)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38473731

RESUMO

Endothelial cells in steady laminar flow assume a healthy, quiescent phenotype, while endothelial cells in oscillating disturbed flow become dysfunctional. Since endothelial dysfunction leads to atherosclerosis and cardiovascular disease, it is important to understand the mechanisms by which endothelial cells change their function in varied flow environments. Endothelial metabolism has recently been proven a powerful tool to regulate vascular function. Endothelial cells generate most of their energy from glycolysis, and steady laminar flow may reduce endothelial glycolytic flux. We hypothesized that steady laminar but not oscillating disturbed flow would reduce glycolytic flux and alter glycolytic side branch pathways. In this study, we exposed human umbilical vein endothelial cells to static culture, steady laminar flow (20 dynes/cm2 shear stress), or oscillating disturbed flow (4 ± 6 dynes/cm2 shear stress) for 24 h using a cone-and-plate device. We then measured glucose and lactate uptake and secretion, respectively, and glycolytic metabolites. Finally, we explored changes in the expression and protein levels of endothelial glycolytic enzymes. Our data show that endothelial cells in steady laminar flow had decreased glucose uptake and 13C labeling of glycolytic metabolites while cells in oscillating disturbed flow did not. Steady laminar flow did not significantly change glycolytic enzyme gene or protein expression, suggesting that glycolysis may be altered through enzyme activity. Flow also modulated glycolytic side branch pathways involved in proteoglycan and glycosaminoglycan synthesis, as well as oxidative stress. These flow-induced changes in endothelial glucose metabolism may impact the atheroprone endothelial phenotype in oscillating disturbed flow.


Assuntos
Antioxidantes , Aterosclerose , Humanos , Antioxidantes/metabolismo , Células Cultivadas , Aterosclerose/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Glicólise
15.
Biochem Biophys Res Commun ; 705: 149736, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38447392

RESUMO

BACKGROUND: Orosomucoid (ORM) has been reported as a biomarker of carotid atherosclerosis, but the role of ORM 2, a subtype of ORM, in carotid atherosclerotic plaque formation and the underlying mechanism have not been established. METHODS: Plasma was collected from patients with carotid artery stenosis (CAS) and healthy participants and assessed using mass spectrometry coupled with isobaric tags for relative and absolute quantification (iTRAQ) technology to identify differentially expressed proteins. The key proteins and related pathways were identified via western blotting, immunohistochemistry, and polymerase chain reaction of carotid artery plaque tissues and in vitro experiments involving vascular smooth muscle cells (VSMCs). RESULTS: We screened 33 differentially expressed proteins out of 535 proteins in the plasma. Seventeen proteins showed increased expressions in the CAS groups relative to the healthy groups, while 16 proteins showed decreased expressions during iTRAQ and bioinformatic analysis. The reactive oxygen species metabolic process was the most common enrichment pathway identified by Gene Ontology analysis, while ORM2, PRDX2, GPX3, HP, HBB, ANXA5, PFN1, CFL1, and S100A11 were key proteins identified by STRING and MCODE analysis. ORM2 showed increased expression in patients with CAS plaques, and ORM2 was accumulated in smooth muscle cells. Oleic acid increased the lipid accumulation and ORM2 and PRDX6 expressions in the VSMCs. The recombinant-ORM2 also increased the lipid accumulation and reactive oxygen species (ROS) in the VSMCs. The expressions of ORM2 and PRDX-6 were correlated, and MJ33 (an inhibitor of PRDX6-PLA2) decreased ROS production and lipid accumulation in VSMCs. CONCLUSION: ORM2 may be a biomarker for CAS; it induced lipid accumulation and ROS production in VSMCs during atherosclerosis plaque formation. However, the relationships between ORM2 and PRDX-6 underlying lipid accumulation-induced plaque vulnerability require further research.


Assuntos
Aterosclerose , Estenose das Carótidas , Placa Aterosclerótica , Humanos , Estenose das Carótidas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Orosomucoide/metabolismo , Músculo Liso Vascular/metabolismo , Aterosclerose/metabolismo , Placa Aterosclerótica/metabolismo , Biomarcadores/metabolismo , Artérias Carótidas/metabolismo , Miócitos de Músculo Liso/metabolismo , Lipídeos , Profilinas/metabolismo
16.
Lipids Health Dis ; 23(1): 76, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38468335

RESUMO

BACKGROUND: Atherosclerosis (AS) is a persistent inflammatory condition triggered and exacerbated by several factors including lipid accumulation, endothelial dysfunction and macrophages infiltration. Nobiletin (NOB) has been reported to alleviate atherosclerosis; however, the underlying mechanism remains incompletely understood. METHODS: This study involved comprehensive bioinformatic analysis, including multidatabase target prediction; GO and KEGG enrichment analyses for function and pathway exploration; DeepSite and AutoDock for drug binding site prediction; and CIBERSORT for immune cell involvement. In addition, target intervention was verified via cell scratch assays, oil red O staining, ELISA, flow cytometry, qRT‒PCR and Western blotting. In addition, by establishing a mouse model of AS, it was demonstrated that NOB attenuated lipid accumulation and the extent of atherosclerotic lesions. RESULTS: (1) Altogether, 141 potentially targetable genes were identified through which NOB could intervene in atherosclerosis. (2) Lipid and atherosclerosis, fluid shear stress and atherosclerosis may be the dominant pathways and potential mechanisms. (3) ALB, AKT1, CASP3 and 7 other genes were identified as the top 10 target genes. (4) Six genes, including PPARG, MMP9, SRC and 3 other genes, were related to the M0 fraction. (5) CD36 and PPARG were upregulated in atherosclerosis samples compared to the normal control. (6) By inhibiting lipid uptake in RAW264.7 cells, NOB prevents the formation of foam cell. (7) In RAW264.7 cells, the inhibitory effect of oxidized low-density lipoprotein on foam cells formation and lipid accumulation was closely associated with the PPARG signaling pathway. (8) In vivo validation showed that NOB significantly attenuated intra-arterial lipid accumulation and macrophage infiltration and reduced CD36 expression. CONCLUSIONS: Nobiletin alleviates atherosclerosis by inhibiting lipid uptake via the PPARG/CD36 pathway.


Assuntos
Aterosclerose , Flavonas , PPAR gama , Animais , Camundongos , PPAR gama/genética , PPAR gama/metabolismo , Aterosclerose/tratamento farmacológico , Aterosclerose/genética , Aterosclerose/metabolismo , Macrófagos , Células Espumosas , Lipoproteínas LDL/farmacologia , Antígenos CD36/genética , Antígenos CD36/metabolismo
17.
Int J Mol Sci ; 25(5)2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38473887

RESUMO

Aortic aneurysms are a serious health concern as their rupture leads to high morbidity and mortality. Abdominal aortic aneurysms (AAAs) and thoracic aortic aneurysms (TAAs) exhibit differences and similarities in their pathophysiological and pathogenetic features. AAA is a multifactorial disease, mainly associated with atherosclerosis, characterized by a relevant inflammatory response and calcification. TAA is rarely associated with atherosclerosis and in some cases is associated with genetic mutations such as Marfan syndrome (MFS) and bicuspid aortic valve (BAV). MFS-related and non-genetic or sporadic TAA share aortic degeneration with endothelial-to-mesenchymal transition (End-Mt) and fibrosis, whereas in BAV TAA, aortic degeneration with calcification prevails. microRNA (miRNAs) contribute to the regulation of aneurysmatic aortic remodeling. miRNAs are a class of non-coding RNAs, which post-transcriptionally regulate gene expression. In this review, we report the involvement of deregulated miRNAs in the different aortic remodeling characterizing AAAs and TAAs. In AAA, miRNA deregulation appears to be involved in parietal inflammatory response, smooth muscle cell (SMC) apoptosis and aortic wall calcification. In sporadic and MFS-related TAA, miRNA deregulation promotes End-Mt, SMC myofibroblastic phenotypic switching and fibrosis with glycosaminoglycan accumulation. In BAV TAA, miRNA deregulation sustains aortic calcification. Those differences may support the development of more personalized therapeutic approaches.


Assuntos
Aneurisma da Aorta Torácica , Aneurisma Aórtico , Aterosclerose , Doença da Válvula Aórtica Bicúspide , Calcinose , Síndrome de Marfan , MicroRNAs , Humanos , Valva Aórtica/patologia , MicroRNAs/metabolismo , Aneurisma Aórtico/complicações , Aneurisma da Aorta Torácica/genética , Síndrome de Marfan/genética , Calcinose/patologia , Fenótipo , Aterosclerose/metabolismo , Fibrose
18.
Cell Commun Signal ; 22(1): 178, 2024 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-38475787

RESUMO

BACKGROUND: Carthamus tinctorius L., a traditional herbal medicine used for atherosclerosis (AS), lacks a clear understanding of its therapeutic mechanisms. This study aimed to investigate the therapeutic effects and mechanisms of Carthamus tinctorius L.-derived nanovesicles (CDNVs) in AS treatment. METHODS: CDNVs were isolated and characterized using improved isolation methods. Transmission electron microscopy, nanoparticle tracking analysis, and protein analysis confirmed their morphology, size, and protein composition. Small RNA sequencing was performed to identify the miRNA profile of CDNVs, and bioinformatics analysis was used to determine their potential biological roles. In vivo biodistribution and toxicity studies were conducted in mice to assess the stability and safety of orally administered CDNVs. The anti-atherosclerotic effects of CDNVs were evaluated in ApoE-/- mice through plaque burden analysis. The protective effects of CDNVs on ox-LDL-treated endothelial cells were assessed through proliferation, apoptosis, reactive oxygen species activation, and monocyte adhesion assays. miRNA and mRNA sequencing of CDNV-treated endothelial cells were performed to explore their regulatory effects and potential target genes. RESULTS: CDNVs were successfully isolated and purified from Carthamus tinctorius L. tissue lysates. They exhibited a saucer-shaped or cup-shaped morphology, with an average particle size of 142.6 ± 0.7 nm, and expressed EV markers CD63 and TSG101. CDNVs contained proteins, small RNAs, and metabolites, including the therapeutic compound HSYA. Small RNA sequencing identified 95 miRNAs, with 10 common miRNAs accounting for 72.63% of the total miRNAs. These miRNAs targeted genes involved in cell adhesion, apoptosis, and cell proliferation, suggesting their relevance in cardiovascular disease. Orally administered CDNVs were stable in the gastrointestinal tract, absorbed into the bloodstream, and accumulated in the liver, lungs, heart, and aorta. They significantly reduced the burden of atherosclerotic plaques in ApoE-/- mice and exhibited superior effects compared to HSYA. In vitro studies demonstrated that CDNVs were taken up by HUVECs, promoted proliferation, attenuated ox-LDL-induced apoptosis and ROS activation, and reduced monocyte adhesion. CDNV treatment resulted in significant changes in miRNA and mRNA expression profiles of HUVECs, with enrichment in inflammation-related genes. CXCL12 was identified as a potential direct target of miR166a-3p. CONCLUSION: CDNVs isolated from Carthamus tinctorius L. tissue lysates represent a promising oral therapeutic option for cardiovascular diseases. The delivery of miRNAs by CDNVs regulates inflammation-related genes, including CXCL12, in HUVECs, suggesting their potential role in modulating endothelial inflammation. These findings provide valuable insights into the therapeutic potential of CDNVs and their miRNAs in cardiovascular disease.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Carthamus tinctorius , MicroRNAs , Camundongos , Animais , Células Endoteliais/metabolismo , Carthamus tinctorius/genética , Carthamus tinctorius/metabolismo , Doenças Cardiovasculares/metabolismo , Distribuição Tecidual , Camundongos Knockout para ApoE , MicroRNAs/genética , Aterosclerose/metabolismo , Inflamação/metabolismo , Apoptose , RNA Mensageiro/metabolismo , Apolipoproteínas E/metabolismo
19.
Int J Nanomedicine ; 19: 2553-2571, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38505171

RESUMO

Purpose: Accumulating evidence indicates that mesenchymal stem cells (MSCs)-derived exosomes hold significant potential for the treatment of atherosclerosis. However, large-scale production and organ-specific targeting of exosomes are still challenges for further clinical applications. This study aims to explore the targeted efficiency and therapeutic potential of biomimetic platelet membrane-coated exosome-mimetic nanovesicles (P-ENVs) in atherosclerosis. Methods: To produce exosome-mimetic nanovesicles (ENVs), MSCs were successively extruded through polycarbonate porous membranes. P-ENVs were engineered by fusing MSC-derived ENVs with platelet membranes and characterized using transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), and Western blot. The stability and safety of P-ENVs were also assessed. The targeted efficacy of P-ENVs was evaluated using an in vivo imaging system (IVIS) spectrum imaging system and immunofluorescence. Histological analyses, Oil Red O (ORO) staining, and Western blot were used to investigate the anti-atherosclerotic effectiveness of P-ENVs. Results: Both ENVs and P-ENVs exhibited similar characteristics to exosomes. Subsequent miRNA sequencing of P-ENVs revealed their potential to mitigate atherosclerosis by influencing biological processes related to cholesterol metabolism. In an ApoE-/- mice model, the intravenous administration of P-ENVs exhibited enhanced targeting of atherosclerotic plaques, resulting in a significant reduction in lipid deposition and necrotic core area. Our in vitro experiments showed that P-ENVs promoted cholesterol efflux and reduced total cholesterol content in foam cells. Further analysis revealed that P-ENVs attenuated intracellular cholesterol accumulation by upregulating the expression of the critical cholesterol transporters ABCA1 and ABCG1. Conclusion: This study highlighted the potential of P-ENVs as a novel nano-drug delivery platform for enhancing drug delivery efficiency while concurrently mitigating adverse reactions in atherosclerotic therapy.


Assuntos
Aterosclerose , Exossomos , Células-Tronco Mesenquimais , Camundongos , Animais , Exossomos/metabolismo , Biomimética , Fusão de Membrana , Aterosclerose/tratamento farmacológico , Aterosclerose/metabolismo , Colesterol/metabolismo , Células-Tronco Mesenquimais/metabolismo
20.
ACS Nano ; 18(11): 8229-8247, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38427686

RESUMO

Endothelial-mesenchymal transition (EndoMT) of vascular endothelial cells has recently been considered as a key player in the early progression of a variety of vascular and nonvascular diseases, including atherosclerosis, cancer, and organ fibrosis. However, current strategies attempting to identify pharmacological inhibitors to block the regulatory pathways of EndoMT suffer from poor selectivity, unwanted side effects, and a heterogeneous response from endothelial cells with different origins. Furthermore, EndoMT inhibitors focus on preventing EndoMT, leaving the endothelial cells that have already undergone EndoMT unresolved. Here, we report the design of a simple but powerful nanoparticle system (i.e., N-cadherin targeted melanin nanoparticles) to convert cytokine-activated, mesenchymal-like endothelial cells back to their original endothelial phenotype. We term this process "Reversed EndoMT" (R-EndoMT). R-EndoMT allows the impaired endothelial barriers to recover their quiescence and intactness, with significantly reduced leukocyte and cancer cell adhesion and transmigration, which could potentially stop atheromatous plaque formation and cancer metastasis in the early stages. R-EndoMT is achieved on different endothelial cell types originating from arteries, veins, and capillaries, independent of activating cytokines. We reveal that N-cadherin targeted melanin nanoparticles reverse EndoMT by downregulating an N-cadherin dependent RhoA activation pathway. Overall, this approach offers a different prospect to treat multiple EndoMT-associated diseases by designing nanoparticles to reverse the phenotypical transition of endothelial cells.


Assuntos
Aterosclerose , Neoplasias , Humanos , Células Endoteliais/metabolismo , Melaninas , 60483 , Caderinas/metabolismo , Caderinas/farmacologia , Citocinas/metabolismo , Aterosclerose/metabolismo , Neoplasias/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...